

Abstracts

DC and RF characteristics of advanced MIM capacitors for MMIC's using ultra-thin remote-PECVD Si₃N₄/SiO₂ dielectric layers

Jae-Hak Lee, Dae-Hyun Kim, Yong-Soon Park, Myoung-Kyu Sohn and Kwang-Seok Seo. "DC and RF characteristics of advanced MIM capacitors for MMIC's using ultra-thin remote-PECVD Si₃N₄/SiO₂ dielectric layers." 1999 *Microwave and Guided Wave Letters* 9.9 (Sep. 1999 [MGWL]): 345-347.

We have fabricated advanced metal-insulator-metal (MIM) capacitors with ultra-thin (200 Å) remote-PECVD Si₃N₄/SiO₂ dielectric layers having excellent electrical properties. The breakdown field strength of MIM capacitors with 200-Å thick Si₃N₄/SiO₂ film was larger than 3.5 MV/cm, which indicates the excellent quality of the deposited Si₃N₄/SiO₂ film. The main capacitance per unit area extracted by radio frequency (RF) measurements was as high as 2900 pF/mm². Tenfold reduction of MIM capacitor size was successfully performed compared with conventional MIM capacitor with 2000-Å PECVD Si₃N₄/SiO₂ dielectric layer. Despite ultra-thin dielectric films of 200-Å thickness, the fabricated MIM capacitors showed good RF performance and high yield.

[Return to main document.](#)